

Faecal indicator sensing – toward a faster method for marine & freshwater

<u>Ciprian Briciu-Burghina</u>, Fiona Regan Marine and Environmental Sensing Technology Hub School of Chemical Sciences, Dublin City University

<u>Outline</u>

- Drivers
- Background
- Results
- Rapid method-initial tests.
- Conclusions/Impact

Drivers

>2006/7/EC BWD

Inland waters							
	Parameter	Excellent	Good quality	Sufficient	Reference methods of		
		quality		quality	analysis		
1	Intestinal Enterococci	200(*)	400(*)	330(*)	ISO 7899-1 or ISO		
	(cfu/100mL)				7899-2		
2	Escherichia coli (cfu/100mL)	500(*)	1,000(*)	900(**)	ISO 9308-3 or		
		\smile			ISO 9308-1		

(*) Based upon a 95-percentile evaluation, (**) Based on a 90-percentile evaluation.

Coastal and transitional waters								
	Parameter	Excellent	Good quality	Sufficient	Reference methods of			
		quality		quality	analysis			
1	Intestinal Enterococci	100(*)	200(*)	185(*)	ISO 7899-1 or ISO			
	(cfu/100 mL)	\frown			7899-2			
2	Escherichia coli (cfu/100mL)	250(*)	500(*)	500(**)	ISO 9308-3 or			
					ISO 9308-1			

(*) Based upon a 95-percentile evaluation, (**) Based on a 90-percentile evaluation.

<u>Drivers</u>

≻Public protection

Standard Methods – E. Coli

Expensive

Time Consuming (18-72 h)

Enzyme based methods

GUD extraction

GUD activity measurement

Colilert 18

Substrate uptake

Background: How this works?

Background: GUD pH optimum

7

Background: Discontinuous Methods

8

<u> Aim:</u>

Develop a continuous fluorometric method for the detection of GUD activity.

Develop a sensing platform for *E. Coli* detection in environmental waters.

Results

Comparison of 3 substrates for the measurement of GUD activity:

Ex/Em optimisationGUD substrate kinetics

- □ 4-MUG/4-MU
- 3-CUG/3-CU
- □ 6-CMUG/6-CMU

UV-VIS Characterization

🗖 4-MUG / 4-MU

Absorption spectra of 100 µM 3-MUG and 50 µM 4-MU in acidic, neutral and alkaline conditions.

Results – UV-VIS Characterization

6-CMUG / 6-CMU

Absorption spectra of 100 μ M 6-CMUG and 50 μ M 6-CMU in acidic, neutral and alkaline conditions.

Emission spectra of 0.1 μ M 4-MU, 3-CU and 6-CMU solutions in acidic, neutral and basic pH conditions. Each fluorophore was excited at the maximum excitation wavelength for the corresponding N and A⁻ ground states.

Nonlinear regression fitting of the experimental data to Boltzman Sigmoidal model; Experimental data and model line for 4-MU (a), 3-CU (b) and 6-CMU (c). Excitation wavelengths are shown in the legend.

🛛 3-CUG / 3-CU

Excitation and emission spectra of 3-CU as influenced by the presence of 3-CUG in Phosphate buffer pH 6.8

G-CMUG / 6-CMU

Excitation and emission spectra of 6-CMU as influenced by the presence of 6-CMUG in Phosphate buffer pH 6.8

GUD-Substrate kinetics

Reaction progress curves

Reaction progress curves for GUD catalysed hydrolysis of different 3-CUG concentrations (shown in the legend); $\lambda ex = 389 \text{ nm}$, $\lambda em 444 \text{ nm}$; slit widths: 5 nm (ex), 2.5 nm (em); GUD was added at a concentration of 500 ng mL⁻¹.

17

GUD-Substrate kinetics

Calibration

Calibration curves for 3-CU in the presence of different 3-CUG concentrations (shown in the legend); $\lambda ex = 389$ nm, λem 444 nm; slit widths: 5 nm (ex), 2.5 nm (em);

GUD-Substrate kinetics

Michaelis-Menten kinetic parameters (20 °C, pH 6.8)

Substrate	K _m (μM)	V _{max} (μM min ⁻¹)	V _{max} / K _m
4-MUG	70.82	2.56	0.031
3-CUG	479.28	0.99	0.002
6-CMUG	106.88	2.07	0.019

Rapid E. Coli detection. Procedure

Rapid E. Coli detection

Sea water

Linear regression between GUD activity and *E. Coli* concentrations in seawater. Error bars represent the SD of n=3 GUD activity measurements taken for each *E. Coli* concentration;

Rapid E. Coli detection

□Fresh water

Linear regression between GUD activity and *E. Coli* concentrations in river water. Error bars represent the SD of n=3 GUD activity measurements taken for each *E. Coli* concentration;

Conclusions/Impact:

□Continuous fluorometric method for the determination of GUD activity has been developed.

□Advantages ✓ reagent consumption is minimised

- \checkmark possible to follow reaction kinetics only when a small amount of sample is available.
- ✓ straightforward approach, prompt evaluation of kinetic data
- minimal sample manipulation, experimental error reduced
 potential for the implementation into an autonomous sensing platform

□The method was applied for the detection of *E. Coli from* environmental water samples and was successful in predicting *E. Coli* concentrations below the EU threshold for "excellent quality", in <u>1h</u>.

Better management of bathing areas.

Acknowledgements

Prof. Fiona Regan

Brendan Heery

Project funded by EU Framework 7 project Advance Technologies for Water Resources and Management (ATWARM), Marie Curie ITN, No. 238273. Coordinated by QUESTOR Centre, Queen's University – Belfast (UK)

Thank you all very much for your attention!

Questions?