ATWARM

UNIVERSITÄT DUISBURG ESSEN

enviplan

ESR 2.4

Nutrient removal in wastewater using microalgae

M. Sc. Carlo Pozza

Urban Water and Waste Management

Universitätsstr. 15 carlo.pozza@uni-due.de 45141 Essen www.uni-due.de/SiwAwi

Urban water and waste management

Presentation summary

Wastewater treatment using microalgae

Urban water and waste management

light

microalgae

Microalgae and artificial wastewater

GRI

Microalgae grow naturally in wastewater Microalgae remove N and P during their growth (proteins are 45-60% of microalgae dry weight)

NH₄+

5,2-6,4 mg NH₄-N/L/d
45-65 mg TSS/L/d

CO,

12.4.990

2,3 mg NH₄-N/L/d

Chlorella sp. (Wang et al. 2009)

Sec. AS

Scenedesmus sp. (Park et al. 2010)

 PO_4^-

Urban water and waste management

Microalgae and real wastewater

GRA light microalgae NH₄⁺ PO₄⁻ **CO**₂ aerobic bacteria COD

Synergic effects (O_2 production (bacteria); rising of the pH for metals and phosphorus precipitation, ammonia volatilization)

Algal-bacteria biomass 20-25 mg NH₄-N/L/d (Gutzeit et al. 2005) 27 mg N/L/d (Van der Hende et al. 2010)

INW^GI^ES^NS^IE^EN^US^RCHAFTEN

Wastewater Treatment Plant of Dorsten (DE)

For microalgae is interesting the nutrient removal in wastewater with low organic carbon content. Where the conventional active sludge treatment is more difficult.

	Centrate of the sludge thickening		Converting and the
Militarity.	Parameter	Concentration	din the
	COD (mgO ₂ /L)	150-200	
Z	DOC (mgC/L)	90-150	
	TN (mgN/L)	500-900	
	NH ₄ -N (mgN/L)	400-700	
	NO ₂ -N (mgN/L)	0-0,5	
	NO ₃ -N (mgN/L)	0-2,0	
Land	Total phosphorous (mgP/L)	15-40	
	C/N ratio	0,1-0,4	
-	N/P ratio	25-33	1
	The second of th	V IN IS	- MARC

Microalgae selection

% of the Centrate in the media

Dorsten native mixture from Centrate (*Scenedesmus* sp. and *Chlorella* sp.)

Mix of *Chlorella sp.* and *Scenedesmus sp.*

Scenedesmus sp.

Chlorella sp.

Dorsten native mixture from urban wastewater (*Scenedesmus* sp. and *Chlorella* sp.)

Scenedesmus obliquus

Centrate of Dorsten

 $COD = 210 \text{ mg } O_2/L$ NH₄-N = 842 mg N/L TP = 49,3 mg P/L

Petri Dishes

Agar 1,5% Ampicillin 200 mg/L Microalgae (200 μL)

16:8 light/night cycle 40-60 μmol/m²/s

Microalgae selection

Reactor volume: 1 L Stirred, pH controlled to 8 bubbling CO₂

Illumination: 20:4 light/night cycle 50-70 μmol/m²/s

Dorsten centrate: 50 mL Starting concentrations: DOC = $9,1\pm5,3$ mg C/L TN_b = $50,0\pm5,1$ mg N/L NH₄-N = $31,2\pm3,3$ mg N/L PO₄-P = $4,5\pm0,5$ mg P/L

UNIVERSITĂT DUISBURG ESSEN

I NWGIESNSIEENUSRCHAFTEN

Urban water and waste management

Microalgae selection

Nutrient removal

- TN_b removal (%)
- **30%** *Chlorella* sp.
- 56% Scenedesmus sp.
- 71% Dorsten mix from centrate
- 94% *Scenedesmus* sp. isolated from the centrate with Petri dish

Biomass production

- (mg TSS/L)
- 171 Chlorella sp.
- 260 Scenedesmus sp.
- 182 Dorsten mix from centrate
- 400 *Scenedesmus* sp. isolated from the centrate with Petri Dish

Urban water and waste management

Presentation summary

Wastewater treatment using microalgae

Urban water and waste management

Photobioreactors in the WWTP of Dorsten

Urban water and waste management

Presentation summary

Wastewater treatment using microalgae

Microflotation

Harvesting of microalgae

Coagulation

3 min, 200 rpm, Al₂(SO₄)₃

Flocculation

15 min, >50 rpm

Flotation

10 min, with microbubbles (30-40 μm) using: enviplan[®] LAB-FLOAT 20

Results

Flocculant: Al₂(SO₄)₃ Different pH: 5, 7, 9 Different dose: from 0 to 90 mg Al/L

Microalgae concentration 100-150 mg TSS/L

With pH=5 and 5-20 mg Al/L TSS removal: 85-90% Turbidity removal: 80-95%

Results with the tubular photobioreactor

Experiment condition:

Flocculant: $Al_2(SO_4)_3$ dose: from 20 to 90 mg Al/L / pH= 5 Microalgae concentration = 890 mg TSS/L / Turbidity = 750

Single experiments

With pH=5 and 90 mg Al/L TSS removal: 75% Turbidity removal: 80%

Experiment in continuo (9,6 L/h)

pH=5 and 90 mg Al/L Turbidity removal: 78-84%

UNIVERSITĂT DUISBURG ESSEN

NWGIESNSIEENUSRCHAFTEN

Urban water and waste management

Biogas production

Conclusions

- Microalgae are effective in wastewater treatment especially in wastewater where the C/N ratio makes the conventional treatment difficult
- Different type of reactor (or illumination) has different performance in nutrient removal
- The produced microalgae can be separated from the liquid phase and digested to produce energy.

NWGIESNSIEENUSRCHAFTEN

Thank you for your attention

M.Sc. Carlo Pozza Urban Water and Waste Management

Universitätsstr. 15 carlo.pozza@uni-due.de 45141 Essen www.uni-due.de/SiwAwi

References

- Metcalf and Eddy (2003). Wastewater engineering: treatment, reuse and disposal. New York, McGraw-Hill.
- G. Gutzeit et al. (2005). "Bioflocculent algal–bacterial biomass improves low-cost wastewater treatment". IWA Publishing, Water Science & Technology 52(12): 9–18
- Rulkens, W. (2007). "Sewage Sludge as a Biomass Resource for the Production of Energy: Overview and Assessment of the Various Options." Energy & Fuels 22(1): 9-15.
- Wang, L., M. Min, et al. (2009). "Cultivation of Green Algae *Chlorella* sp. in Different Wastewaters from Municipal Wastewater Treatment Plant." Applied Biochemistry and Biotechnology 162(4): 1174-1186
- Park, J., H.-F. Jin, et al. (2010). "Ammonia removal from anaerobic digestion effluent of livestock waste using green alga *Scenedesmus* sp." Bioresource Technology 101(22): 8649-8657
- Sofie Van Den Hende et al. (2010). "Carbon and nutrient scavenging from sewage and flue gas with MaB-flocs". Proceedings of the AquaFUELs Roundtable Meeting, Brussels, 22/10/2010