Technical development Priorities in water Industry

Joe Higgins Technical & Sales Director Veolia Water Ireland

ATWARM International Conference 2013 May 14th | Dublin City University

The New Solutions

Wastewater: More arduous ELV's ? Sludge: The New 'El Dorado' ?

Drinking Water Development will focus on

And.....

Perchlorates	4 µg/L
--------------	--------

 Formaldehyde

 Algae toxin

 Polymer Residual

OPALINE C Removal of DOC, pesticides, & endocrine disruptors

Actiflo Rad[™] & Multiflo Rad[™]

Actiflo Rad

Radioactivity treatment

lacksquare

Nano-filtration

(+ F, NO₃⁻, Pesticides) (Se, Ni ,PO4)

 \odot

Wastewater Development will focus on

Energy Self – sufficiency

Endocrin disruptors Drug residues

And....

Granular Bacteria

	Classic SBR	SBGR
Sludge concentration (g/L)	5	10-20
Settling time (h)	2	0.5
Load (kgDCO/m3/j)		15
Settling V. (m/h)	1	10-20
SVI (mL/g)	100-200	50

 \odot

Municipal UASB

- Reduce energy consumption:
 - with CH4 production
 - Reducing O2 consumption in the biological tank

Primary Clarification Alternative in future.... UASB

UASB IMPACT

- Electricity consumption reduction to ca. 0.25 kWh/m³
- Sludge production reduction by > 30%
 - WWTP self sufficient increase from 50-70% to 90-110%

- Bio-P Removal
- Design to inhibit presence of Glycogen Accumulating Organism (GAO) and promote Polyphosphate Accumulating Organism (PAO) to facilitate an efficient bio DeP.

Aeration savings, e.g. Ammonit

Online aeration control for conventional Activated Sludge treatment including

2 major benefits : Improve effluent quality Reduce energy consumption

3 modes available:

Mode 1: Simultaneous Nitrification - Denitrification with Nitrogen probes Mode 2: Sequencing Nitrification - Denitrification with Nitrogen probes Mode 3: Sequencing Nitrification - Denitrification with ORP/DO probes

[N-NH₄]

IN-NO.

Continuous

O l Probe

ORP

Pr lau F

Endocrine disruptors:

 Remove pharmaceutical & drugs by-products, hormones, heavy metals and pesticides

Combination Actiflo carb / O3

High Performance MBR

- Biological Treatment
- Sludge age: 6 12 d
- T C:40 C
- SS: 10 g/L
- Evaluation of the performances on C, N & P.

AnitaMOX - Sjölunda WWTP Sweden(550,000PE) – Ammonia Removal <u>without</u> Carbon Source -

Parameters	Average influent concentration	Average effluent concentration	Average removal
NH4	950 mg/L	100 mg/L	90%
TN	1050 mg/L	210 mg/L	80%

Tertiary Treatment to facilitate Reuse, & Reduce Water Footprint e.g. Barcelona (4m³/sec)

Sludge Treatment Development will focus on

Sludge Drying Alternative: Solia

Product Recovery

$Mg^{2+} + NH_4^+ + PO_4^{3-} + 6H_2O \longrightarrow MgNH_4PO_4, 6 H2O(solide)$ $Mg^{2+} / NH_4^+ / PO_4^{3-} = 1/1/1$

Energy Production

Increasing biogas and electrical production: EXELYS[™] e.g. convert an existing AD to Veolia's DLD configuration

+25-30% electricity production & -50% on sludge volume

Hillerød WWTP, Denmark : Biothelys example

Post TH Integration

VS Destruction 65% (+30%)

Biogas 378Nm³/hr (+30%)

Sludge cake production 1,640 kg/d (-39%)

> DS content 32%

 $(\mathbf{0})$

Energy balance at North-Pest WWTP (2009-2011) as a result of co-digestion/optimisation

Energy profile of Future for a 100,000 PE WWTP plant

Today's WWTP : as it comes today includes pre-treatment, digesters and gas engine. The total result of the annual electricity consumption is 2,200 MWh (load of ~ 1,300 t CO_2 /year).

 (\mathbf{r})

27

Energy Neutral WWTP: enhanced pre-treatment, Advanced control of aeration tanks, TH, reject water treatment and gas engine. Total annual electricity consumption is 0 MWh (load of ~ 50 t CO_2 /year).

FUTURE enhanced pre-treatment, UASB, Advance Treatment & control, TH process, reject water treatment, fuel cells, co-digestion, sludge drying and incineration. Total annual electricity production is 1,700 MWh (a displacement of ~ 1,000 t CO_2 /year).

Future WWTP Energy Trend ?

Next Generation WWTP?

Thank You

 \odot