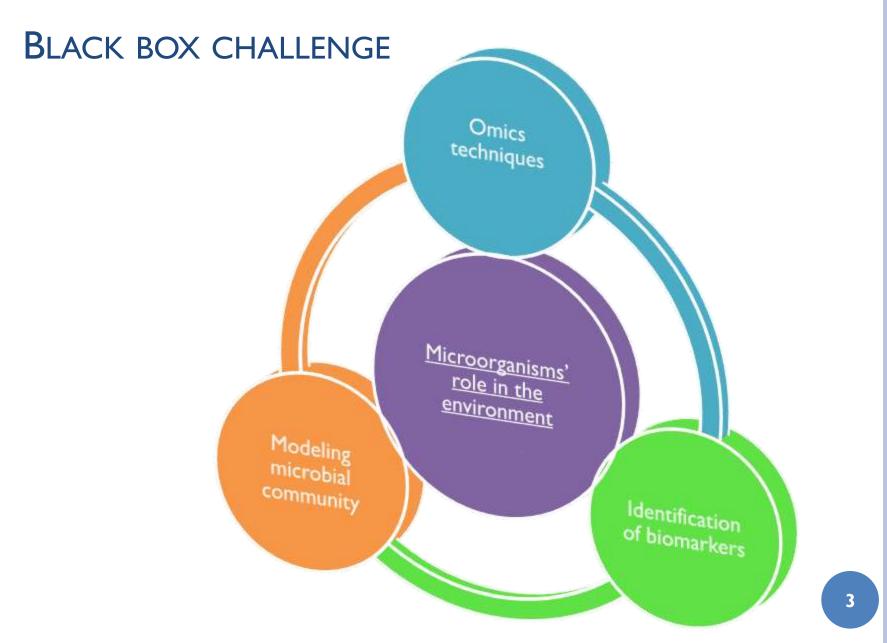


INSIDE THE BIODEGRADATION PROCESS IN CONTAMINATED GROUNDWATER

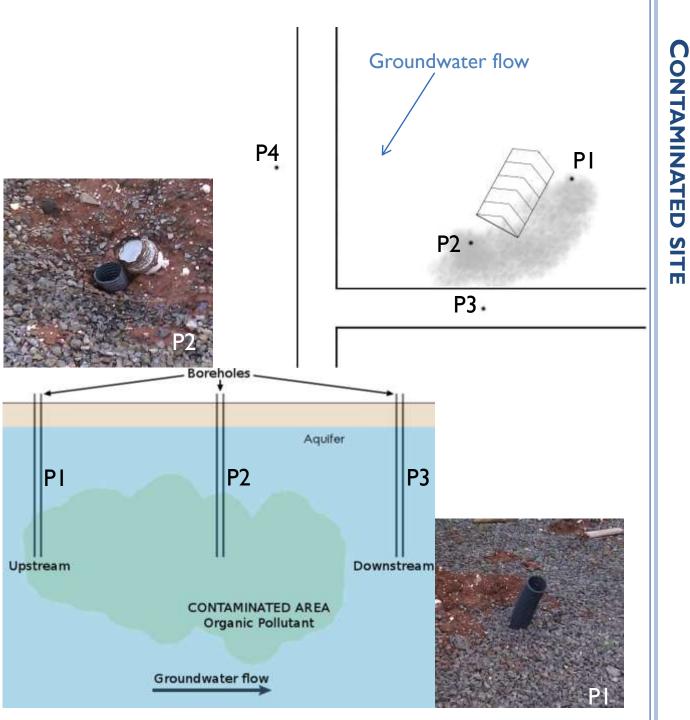
Alessandra Frau

I 4th of May 2013 ATWARM Conference "Water - The Greatest Global Challenge" Dublin City University


BIOREMEDIATION & BIODEGRADATION

- Use of microorganisms to recover contaminated environment
- <u>Exxon-Valdez Alaska 1989</u>
 Bioremediation main method used (biostimulation through the addition of fertilizer)¹
- <u>BP Deepwater Horizon Gulf of</u> <u>Mexico 2010</u> molecular biological techniques (e.g. microarray) immediately used to understand the role of microorganisms in the degradation process¹

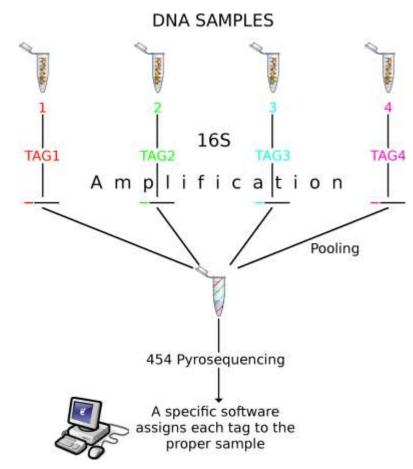
¹ Atlas R. M., Hazen T. C. **2011** "Oil Biodegradation and Bioremediation: A tale of the Two worst Spills in U.S. History" *Environmental Science & Technology*, 45, 67067-6715


Ma J. and Zhai G. **2012** "Microbial Bioremediation in Omics era: Opportunities and Challenges" *Bioremediation & Biodegradation*, 3:9.

OUR CONTRIBUTION...

• Microbial community study in contaminated groundwater

- Functional genes sequencing and qPCR
- Identification of new biomarkers
- Development and update of rapid methods to assess the biodegradation potential in contaminated groundwater

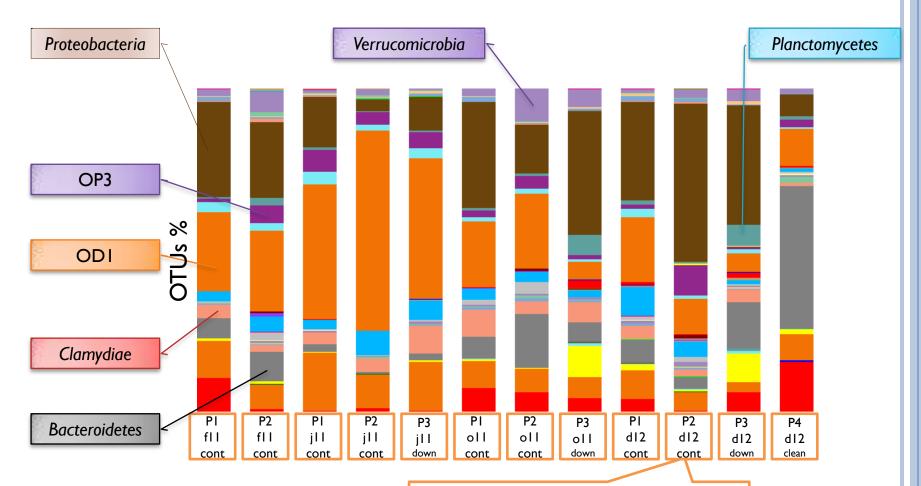

 Area located in Northern Ireland, contaminated by Diesel after an accidental spillage.

Contamination
 level: Aliphatic C5 C35 480 ppm,
 Aromatic C5-C35
 I 30 ppm.

Negative redox
 potential and lower
 DO in PI, P2 and P3
 but not in P4 (clean control).

5

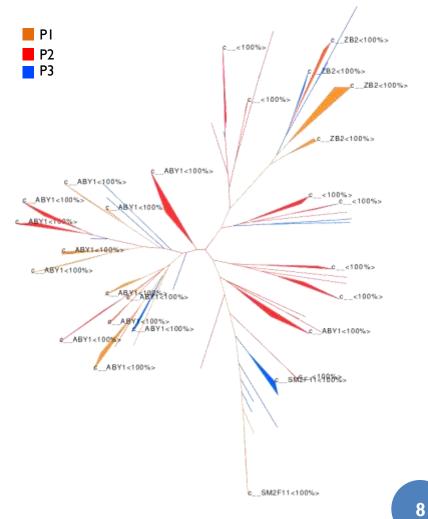
MICROBIAL COMMUNITY STUDY: I6S RRNA GENE BARCODED PYROSEQUENCING



Data Analysis:

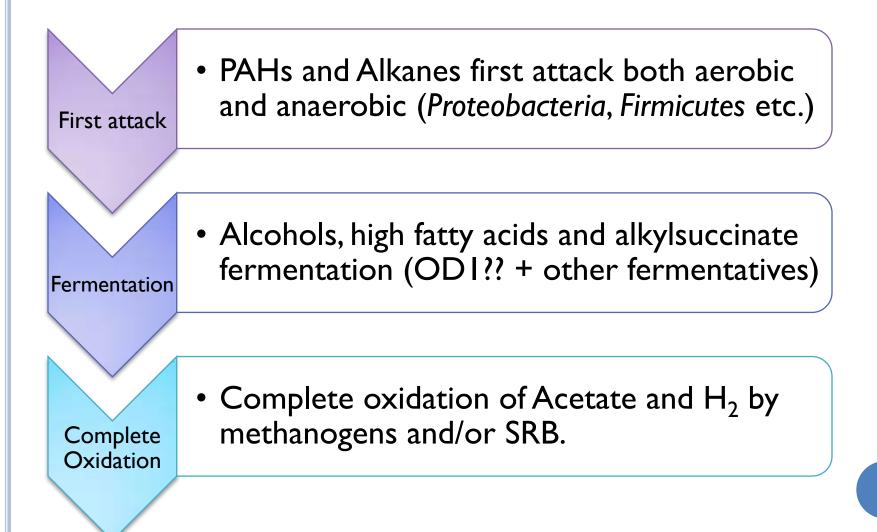
- QIIME Pipeline ^I
- USEARCH: noise removal, chimera detection (LICHIM
 - chimera detection (UCHIME) and OTUs picking ^{2,3}
- Pynast: alignment⁴
- GreenGenes 10_12 and RDP Classifier 2.2: assign taxonomy^{5,6}
- Fast Tree 2.1.3: phylogenetic tree⁷

¹ Caporaso JG, et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7:335-336. ² Edgar RC. **2010**. Search and clustering orders of magnitude faster than BLAST. *Bioinformatics* 26(19):2460-2461. ³ Edgar, RC et al. **2011**. UCHIME improves sensitivity and speed of chimera detection. *Bioinformatics* btr381. ⁴ Caporaso JG, et al. **2010**. PyNAST: a flexible tool for aligning sequences to a template alignment. *Bioinformatics* 26:266-267. ⁵ McDonald D et al **2012**. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6(3): 610–618. ⁶ Wang Q et al. **2007**. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. *Appl Environ Microb* 73(16): 5261-5267. ⁷ Price MN, Dehal PS, Arkin AP. **2010**. FastTree 2-Approximately Maximum-Likelihood Trees for Large Alignments. *Plos One* 5(3).

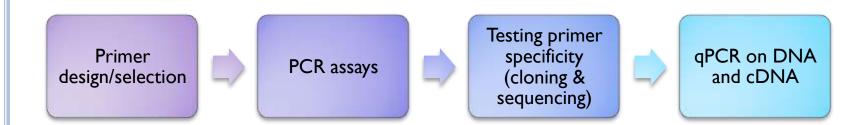

MICROBIAL COMMUNITY STUDY: TAXA SUMMARY AT PHYLUM LEVEL

49% of Proteobacteria:34.8% of Synthrophobacterales fermentative bacteria!!

MICROBIAL COMMUNITY STUDY: CANDIDATE DIVISION OD I


- Never isolated in pure culture
- Strictly anaerobe, fermentative, non respiring, produces acetate, generates and consumes H₂ and/or SH₂
- Widespread in aquatic environments
- Already detected in contaminated groundwater

ODI: Wrighton KC et al. **2012**. Fermentation, Hydrogen, and Sulfur Metabolism in Multiple Uncultivated Bacterial Phyla. *Science* 337:1661-1665.

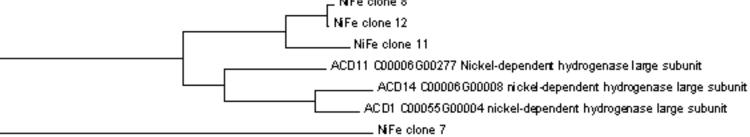

Tree Software: Pirrung M et al. **2011.** TopiaryExplorer: An application for connecting large phylogenetic trees to environmental metadata; *Bioinformatics* 27(21): 3067–3069.

WHAT ABOUT THE BIODEGRADATION PROCESS? OUR HYPOTHESIS...

9

WORKFLOW: ASSESSING THE BIODEGRADATION PROCESS

FUNCTIONAL GENES


Step	Pathway	Enzyme	Primers	PCR assays				Primers
				PI	P2	P3	P4	tested (sequencing)
First Attack	Aerobic PAH	Dioxygenase GRAM +	PAH-RHD GP (Cebron et al 2008)	+/-	+/-	-	+/-	specific
	Aerobic PAH	Dioxygenase GRAM -	PAH-RHD GN (Cebron et al 2008)	+/-	+	-	-	specific
	Aerobic Alkane	monooxygenase	AlkBw (Wang et al 2010)	+	+/-	-	-	Not specific
	Anaerobic aromatic	bamA hydrolase	SP9/ASP1 (Abu Laban et al 2010)	+	+	-	+/-	specific
	Anaerobic aromatic	bamB	BamB (Loeffler et al 2011)	+/-	+	-	-	specific
Fermentation	General	Fe Hydrogenase	hydA1290F/1538R (Pereyra et al 2010)	+	+	-	-	specific
	ODI	NiFe Hydrogenase	NiFe1a/NiFe1 this study	+/-	+	-	-	specific
Complete Oxydation	Methanogens	mcrA	mcrA 1035F/1538R (Pereyra et al 2010)	+	+	-	-	specific
	SRB	dsrA	dsrA 290F/660F (Pereyra et al 2010)	+	+	-	-	specific

FOCUSING ON OD I ROLE

01

Identification of functional gene involved in the fermentation process (NiFe hidrogenase)

Primer design using sequences from published

Quantification + linking identity and functionality

NEW MARKER OF THE BIODEGRADATION PROCESS

¹Wrighton KC et al. **2012**. Fermentation, Hydrogen, and Sulfur Metabolism in Multiple Uncultivated Bacterial Phyla. *Science* 337:1661-1665.

12

IN CONCLUSION...

- Evaluation of the microbial community in contaminated groundwater: extremely informative!!
- Hypothesis of a biodegradation process mainly anaerobic, with an important contribution of fermentative bacteria!
- Identification of a new biomarker!
- In progress is the development of a rapid technology based mainly on qPCR to evaluate the biodegradation process in contaminated groundwater, validated through the comparison of DNA vs cDNA data and contaminated vs control samples data.

ACKNOWLEDGMENT

- Whiteford Geoservices for the samples and preliminary chemical data
- My supervisors: Prof M J Larkin, Dr L Kulakov and Dr C C R Allen for their help and support!
- Blathnaid Mc Polin for her help in samples collection and analysis of water quality parameters *in situ*
- Dr Anna Kulakova and Dr Paul Flanagan for their help in the lab
- All my colleguaes of the 0G414 lab!

Thank you for your kind attention